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1 Introduction

The field of Cryptography has long ago created theoretical algorithms to be
carried out on quantum computers. Quantum Computing will make most of
our current cryptosystems useless thus leaving our online transactions easy to
break into. This paper will delve deeper into what Quantum Cryptography is
and the physics behind it. Then it will touch on how we will move forward.

Perhaps because the field was dominated by Cryptographers, Computer Sci-
entists, and Mathematicians, much of Quantum Computing glosses over the
physics behind the system. Below is a brief attempt to establish a link between
Quantum Computing and Quantum Mechanics.

1.1 Determination of Hilbert Space

The first thing to do in any Quantum Mechanical problem is to establish the
Hilbert Space, H. One can thinks of Quantum Computing as a Quantum Me-
chanical problem where the solution is known but it is the System is unknown.
The solution is a vector |¥) = a|0) + b|1), known as a qubit. It is the simplest
bit that can be used for Quantum Computing. It is a superposition of two states
that needs to have unitary transformations meaning the state must evolve with
time. Thus a qubit is a Two-Level Quantum System. H is determined by the
physical setup used to create the computer.
Here are some examples of qubits with their Hilbert Spaces.

1.1.1 Square Well

We can use a one dimensional square well potential to create a qubit. The
Hilbert Space of this problem is well known to us to be H — £2(R). A two-level
system in this space can be written as
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The basis of this space is ¥,, where ¥,, = %sin(%x),n =0,1,2,..., If it
were set up in a way where only the two lowest energy levels then the solution
can be written as U(t) = cq(t)sin(Ex)e ™ Fat/h 4 ¢(t) sin(Zz)e 1 Eot/h. We
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By causing perturbations in the hamiltonian, unitary transformations become
possible because it causes changes in ¢,(t) and ¢ (¢).

This is not really used but it is an example to show that the abstractness
present in Quantum Mechanics translates to a certain level of abstraction in
Quantum Computing. Fact harmonic oscillator quantum computers are realiz-
able.

can write this abstractly as |¥) = ( ), which can represent a qubit.

1.1.2 Spin

The spin of an electron can be used to represent individual qubits. The spin
of an electron has two eigenstates, spin up or spin down, and the superposition
of both causes the system to be an inherent two-state system. The system is
written as |¥) = a|0) + b|1) where

o= )m=(7) @

Using hermitian operators as gates allow us to make measurements to the sys-
Z ) ;a,be(C)}.
The generic notation for qubit states are |0) and |1) but that does not nec-
essarily mean spin is what is being represented. The polarization of photons, or
the ground and excited states of electrons can equally be described as qubits.
Just like current computing is done using binary bits Quantum Computation
occurs using qubits. Now that we have lightly explained some of the physical
background, let’s discuss potential uses of Quantum Computation.

tem. The Hilbert Space for an electron’s spin is H — {X = (

2 Cryptographic Applications

Modern Cryptography uses of mathematical processes to encrypt messages for
security and communication. The goal of public key cryptography is to ex-
change information securely over channels that are not secure. There are two
keys’ in public key cryptography, an encryption key and a decryption key. The
encryption key is public but the decryption key is private, and thus makes the a
public encrypted message secure. Different cryptosystems have been developed
with differing levels of security. One such system developed first by the NSA
and then independently by public inventors is RSA.

Quantum Computation gives rise to methods that can easily find the decryp-
tion key. Because Quantum Computers are much more efficient in certain areas,
previously secure cryptosystems are no longer so. Quantum Computation can
speed up calculations of searching, solving the discrete log problem, solutions
of NP-complete problems, order finding and more. Below is an example of how
Quantum Computing can effect current cryptosystems.



2.1 RSA and Shors Algorithm

RSA is a public key cryptosystem that allows two entities to communicated
securely, even with an eavesdropper listening in on their channel. Here is how
two people, Alice and Bob would exchange a message.

1. Alice sends a public key (N,e) to Bob, where N and e are chosen. N
is picked so it is the composite of two prime numbers p,q and larger
than any potential messages. p and ¢ are secret. e is chosen so that
ged((p—1)*(¢—1),e) = 1. This is important because RSA is done using
modular arithmetic.

2. Bob uses the key to encrypt his message. He does the calculation ¢ = m*®

(mod N) and sends ¢ to Alice publicly.

3. To decrypt Bob’s message Alice finds d her decryption key. d = e~! mod
((p — q) *x (¢ — 1)). She then decrypts the message by carrying out the
operation m = ¢? mod (N)

The security of RSA is based on the difficulty of factoring N and finding p &
q. There are a few techniques and ways to reduce the risk of someone finding
the composition of N. Here is an example of RSA, to help better understand
it. Alice sends Bob a public key of (77,17). Bob want to send the letter ”F”
to Alice. The message, m, is encoded using ASCII so that m = 70, and then
encrypted so that ¢ = 707 mod(77). He sends Alice ¢ = 49. N, e, &c are all
public. In order to decrypt his message Alice takes her secret keys p = 11&q =7
to find her decryption exponent d = 177! mod (60), so d = 53. p, q, &d are all
private. She then takes m = c¢? mod (77) to find that m = 49°% mod (77) = 70.
In 1994, a quantum algorithm was developed to break this cryptosystem called
Shor’s Algorithm. To use Shor’s Algorithm to factor N first chose a random z
mod (), find its order r such that 2" = 1 mod(V), and find the ged (2% —1, N).
This will be one factor of N and the other will be the ged (2% + 1, N). This is
because (2 —1,N)* (22 —1,N) = 2" —1 = 0 mod (N). If  is odd or 27/? = —1
mod(NV) pick a new z. Finding the order r requires the use of the Quantum
Fourier Transform.

2.2 Quantum Fourier Transform

The quantum Fourier transform can be used to find the order of a function.
Given an z and and N, it can be used to find 2" = 1 mod (N). Below is
technical explanation of the process. The QFT is a unitary transformation that
does the following

1 - Tiac,
a) — %262 /9e) (3)
c=0

for some a such that 0 < a < ¢. Shor’s original algorithm uses the QFT to find
r by doing the following. Find ¢ = 2" where N2 < ¢ < 2N2. Next create a



machine with with a q-qubit representing numbers a (mod ¢). Our machine is
represented by ﬁ Zg;é a). Then we calculate and apply |z%mod(n)) giving us

ﬁ Zg;é a) |z%(modn)). We then use the QFT on the first qubit. This maps

la) — % S 971 e2miac/a|¢). The machine is then in the state

qg—1lq—1
1

- Z Z e2miac/q le) |[x*mod(N)) (4)

q a=0 c=0

. Now measure the first qubit and observe the value of |¢, z*mod(N)). Our ma-
chine is in the state % Zg;é e?miec/q|c) |x*mod(N)).The probability the machine

is in a particular state |c, z¥mod(N)) is the square of its coefficient ||% 23—1 i e2miac/a||.

The order of x is 7 so a can be rewritten as a = br + k and our probabifi‘& be-
comes ||% ,ESO"“‘”/” e?mi(brk)e/a|| Because k is not in the summation, it can
be factored out and then disregarded. rc should be replaced by {rc},, which
is the residue of equivalent rc¢ mod(q) values. Then turning the sum into an

integral, and substituting u = %b the summation becomes

1 {rclq
*/627” T “du (5)

r

. With some manipulation of boundaries to get the highest probability there is
an ideal range of values for {rc}, found to be 5 < {rc}, < 7. Replacing the
residue of rc mod (q), {rc}q by rc— dg the inequality is 5= < rc—dg < 5. The
order r can then be found using the term

£-Yso (6)

because ¢ and ¢ are known there will be a solution to the inequality. By keeping
the fraction % in lowest terms, the order r can be found. This is a complicated
explanation of how to find the order of a number mod (q). However this has
been coded in qiskit and is available online, and is theoretically very fast on
a quantum computer. All of this to say is that RSA and other private key
cryptosystems are in trouble.

3 Conclusion

This paper began with an explanation on what a qubit is in the physical sense.
After a brief description, it went on to explain one use of a quantum computer
and a specific quantum algorithm. There are many uses for the quantum Fourier
transform within the field of cryptography itself. Quantum Computing will
completely change online security.
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